王斌举

发布日期:2019-09-12     浏览次数:次   

电子邮箱:wangbinju2018@xmu.edu.cn
课题组网站:https://bjwanggroup.xmu.edu.cn/publications.html

个人简历:

教授 (威尼斯615vip游戏2018.08~至今)

博士后 (巴塞罗那大学 2016.09 ~ 2018.08)

博士后 (耶路撒冷希伯来大学 2012.09 ~ 2016.09)

博士 (威尼斯615vip游戏 2007.09 ~ 2012.07)

学士 (哈尔滨工业大学 2003.09 ~ 2007.07)

研究兴趣:
本课题组研究领域主要是水溶液以及蛋白环境下化学反应的多尺度理论模拟,研究手段包括各种多尺度理论模拟方法,如量子化学计算,分子动力学模拟,量子力学-分子力学组合方法,以及从头算动力学模拟。通过理论模拟,我们希望解决金属酶中一系列实验手段不容易解决的核心问题,包括金属酶催化机理,O2以及H2O2在金属酶中活化过程以及含氧中间体反应性质,电子质子转移微观机理。在对酶催化机理有深入认识的基础上,我们将进一步和实验课题组合作,开发设计基于金属酶的生物合成反应,用于重要药物中间体以及化学品中间体的生物合成。

近期主要代表论著:

  1. 1. B. Wang, D. Usharani, C. Li, S. Shaik*, Theory Uncovers an Unusual Mechanism of DNA Repair of a Lesioned Adenine by AlkB Enzymes. J. Am. Chem. Soc., 2014, 136, 13895–13901.

  2. 2. B. Wang, C. Li, K. Dubey, S. Shaik*, QM/MM Calculated Reactivity Networks Reveal How Cytochrome P450cam and Its T252A Mutant Select Their Oxidation Pathways. J. Am. Chem. Soc. 2015, 137, 7379–7390.

  3. 3. B. Wang, Z. Cao, D. Sharon, S. Shaik*, Computations Reveal a Rich Mechanistic Variation of Demethylation of N-Methylated DNA/RNA Nucleotides by FTO. ACS Catal., 2015, 5, 7077–7090.

  4. 4. K. Dubey#, B. Wang#, S. Shaik*. Molecular Dynamic and QM/MM Calculations Predict the Substrate –Induced Gating of Cytochrome P450 BM3 and the Regio- and Stereo-selectivity of Fatty Acid Hydroxylation J. Am. Chem. Soc. 2016, 138, 837–845.

  5. 5. B. Wang,*, J. Lu, K.D. Dubey, G. Dong, W. Lai,* S. Shaik.* How do Enzymes Utilize Reactive OH Radicals? Lessons from Nonheme HppE and Fenton Systems. J. Am. Chem. Soc. 2016, 138, 8489-8496.

  6. 6. A. Li#, B. Wang#, A. Ilie, K. D. Dubey, G. Bange, I. V. Korendovych, S. Shaik, M. T. Reetz. A redox-mediated Kemp eliminase. Nat. Commun. 2017. 14876.

  7. 7. B. Wang, E. M. Johnston, P. Li, S. Shaik, G. J. Davies, P. H. Walton, C. Rovira. QM/MM Studies into the H2O2-Dependent Activity of Lytic Polysaccharide Monooxygenases: Evidence for the Formation of a Caged Hydroxyl Radical Intermediate. ACS Catal., 2018, 8, 1346–1351.

  8. 8. Deng Weiping; Wang Pan; Wang Binju; Wang Yanliang; Yan Longfei; Li Yanyun; Zhang Qinghong*; Cao Zexing; Wang Ye*; Transformation of Cellulose and Related Carbohydrates into Lactic Acid with Bifunctional Al (III)-Sn (II) Catalysts, Green Chemistry, 2018, 20 (3): 735-744.

  9. 9. Wang Binju; Ignacio Fita; Carme Rovira*; Theory Uncovers the Role of the Methionine-Tyrosine-Tryptophan Radical Adduct in the Catalase Reaction of KatGs: O2 Release Mediated by Proton-Coupled Electron Transfer, Chemistry-A European. Journal, 2018, 24 (20): 5388-5395.

  10. 10. Zhou, H,# Wang, B,# Wang, F.; Yu, X.; Ma, L.; Li, A.; Reetz. M. Chemo‐and Regioselective Dihydroxylation of Benzene to Hydroquinone Enabled by Engineered Cytochrome P450 Monooxygenase. Angew. Chem. Int. Ed. 2019, 58, 764-768.

  11. 11. B. Wang, P. H. Walton, C. Rovira. The Molecular Mechanisms of Oxygen Activation and Hydrogen Peroxide Formation in Lytic Polysaccharide Monooxygenases. ACS Catal., 2019, 9, 4958–4969.

  12. 12. B. Wang,* Z. Cao, C. Rovira, J. Song, S. Shaik.* Fenton-Derived OH Radicals Enable the MPnS Enzyme to Convert 2-Hydroxyethylphosphonate to Methylphosphonate: Insights from Ab Initio QM/MM MD Simulations. J. Am. Chem. Soc. 2019, 141, 9284.

  13. 13. Su, H.; Wang, B.;* Shaik, S.* Quantum-Mechanical/Molecular-Mechanical Studies of CYP11A1-Catalyzed Biosynthesis of Pregnenolone from Cholesterol Reveal a C–C Bond Cleavage Reaction That Occurs by a Compound I-Mediated Electron Transfer. J. Am. Chem. Soc. 2019, 141, 20079.

  14. 14. Wu, P.; Fan, F.; Song, J.; Peng, W.; liu, J.; Li, C.; Cao, Z.; Wang, B.* Theory Demonstrated a “Coupled” Mechanism for O2 Activation and Substrate Hydroxylation by Binuclear Copper Monooxygenases. J. Am. Chem. Soc. 2019, 141, 19776.

  15. 15. Wang, J-B.;* Huang, Q.; Peng, W.; Wu, P.; Yu, D.; Chen, B.; Wang, B.;* Reetz, M.* P450-BM3-Catalyzed Sulfoxidation versus Hydroxylation: A Common or Two Different Catalytically Active Species? J. Am. Chem. Soc. 2020, 142, 2068.

  16. 16. Huang Xiaoqiang#; Wang Binju#; Wang Yajie; Jiang Guangde; Feng Jianqiang; Zhao Huimin*; Photoenzymatic Enantioselective Intermolecular Radical Hydroalkylation, Nature, 2020, 584: 69-74.

  17. 17. Li Jiancheng; Wu Peng; Jiang Wenjun; Li Bin; Wang Binju*; Zhu Hongping*; Herbert W. Roesky*; An Unusual and Facile Synthetic Route to Alumoles, Angewandte Chemie International Edition, 2020, 59 (25): 10027-10031.

  18. 18. Ronny Cheng; Wu Chun*; Cao Zexing*; Wang Binju*; QM/MM MD simulations reveal an asynchronous PCET mechanism for nitrite reduction by copper nitrite reductase, Physical Chemistry Chemical Physics, 2020, 22 (36), 20922-20928.

  19. 19. Wang Binju; Wang Zhanfeng; Gideon J. Davies; Paul H. Walton*; Carme Rovira*; Activation of O2 and H2O2 by Lytic Polysaccharide Monooxygenases, ACS Catalysis, 2020, 10 (21): 12760-12769.

  20. 20. Wang Zhanfeng; Feng Shishi; Carme Rovira*; Wang Binju*; How Oxygen-binding Enhances Long-range Electron Transfer: Lessons from Reduction of Lytic Polysaccharide Monooxygenases by Cellobiose Dehydrogenase, Angewandte Chemie International Edition, 2021, 60 (5): 2385-2392.

  21. 21. Wang Zhanfeng; Sason Shaik*; Wang Binju*; Conformational Motion of Ferredoxin Enables Efficient Electron Transfer to Heme in the Full-Length P450TT, Journal of the American Chemical Society, 2021, 143 (2): 1005-1016.

  22. 22. Deng Weiping#; Yan Longfei#; Wang Binju#; Zhang Qihui; Song Haiyan; Wang Shanshan; Zhang Qinghong*; Wang Ye*; Efficient Catalysts for the Green Synthesis of Adipic Acid from Biomass, Angewandte Chemie International Edition, 2021, 60 (9): 4712-4719.

  23. 23. Peng Wei; Qu Xiaoyang; Sason Shaik*; Wang Binju*; Deciphering the Oxygen Activation Mechanism at the CuC Site of Particulate Methane Monooxygenase, Nature Catalysis, 2021, 266–273.

  24. 24. Jia Liu, Peng Wu, Shengheng Yan, Yuanyuan Li, Zexing Cao, and Binju Wang*. Spin-Regulated Inner-Sphere Electron Transfer Enables Efficient O-O Bond Activation in Nonheme Diiron Monooxygenase MIOX. ACS Catal. 2021, 11, 6141−6152.


 

上一条:苏培峰 下一条:吴玮

Baidu
sogou